Hurwitz rational functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Hurwitz function for rational arguments

Using functional properties of the Hurwitz zeta function and symbolic derivatives of the trigonometric functions, the function ζ(2n + 1, p/q) is expressed in several ways in terms of other mathematical functions and numbers, including in particular the Glaisher numbers. 2000 Mathematics Subject Classification. Primary 11M35, 33B99. Secondary 11B75, 33E20.

متن کامل

Values of the Legendre chi and Hurwitz zeta functions at rational arguments

We show that the Hurwitz zeta function, ζ(ν, a), and the Legendre chi function, χν(z), defined by ζ(ν, a) = ∞ ∑ k=0 1 (k + a)ν , 0 < a ≤ 1, Re ν > 1, and χν(z) = ∞ ∑ k=0 z2k+1 (2k + 1)ν , |z| ≤ 1, Re ν > 1 with ν = 2, 3, 4, . . . , respectively, form a discrete Fourier transform pair. Many formulae involving the values of these functions at rational arguments, most of them unknown, are obtained...

متن کامل

Counting Ramified Coverings and Intersection Theory on Spaces of Rational Functions I (cohomology of Hurwitz Spaces)

The Hurwitz space is a compactification of the space of rational functions of a given degree. The Lyashko–Looijenga map assigns to a rational function the set of its critical values. It is known that the number of ramified coverings of CP by CP with prescribed ramification points and ramification types is related to the degree of the Lyashko–Looijenga map on various strata of the Hurwitz space....

متن کامل

Generating Functions for Hurwitz-Hodge Integrals

In this paper we describe explicit generating functions for a large class of Hurwitz-Hodge integrals. These are integrals of tautological classes on moduli spaces of admissible covers, a (stackily) smooth compactification of the Hurwitz schemes. Admissible covers and their tautological classes are interesting mathematical objects on their own, but recently they have proved to be a useful tool f...

متن کامل

Analytic continuation of multiple Hurwitz zeta functions

We use a variant of a method of Goncharov, Kontsevich, and Zhao [Go2, Z] to meromorphically continue the multiple Hurwitz zeta function ζd(s; θ) = ∑ 0<n1<···<nd (n1 + θ1) −s1 · · · (nd + θd)d , θk ∈ [0, 1), to C, to locate the hyperplanes containing its possible poles, and to compute the residues at the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2011

ISSN: 0024-3795

DOI: 10.1016/j.laa.2011.03.062